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We consider Metropolis Markov chains with finite state space and transition
probabilities of the form

P(g, gŒ)=q(g, gŒ) e−b[H(gŒ)−H(g)]+

for given energy function H and symmetric Markov kernel q. We propose a
simple approach to determine the asymptotic behavior, for large b, of the first
hitting time to the ground state starting from a particular class of local minima
for H called metastable states. We separate the asymptotic behavior of the
transition time from the determination of the tube of typical paths realizing
the transition. This approach turns out to be useful when the determination of
the tube of typical paths is too difficult, as for instance in the case of conserva-
tive dynamics. We analyze the structure of the saddles introducing the notion
of ‘‘essentiality’’ and describing essential saddles in terms of ‘‘gates.’’ As an
example we discuss the case of the 2D Ising Model in the degenerate case of
integer 2J

h
.

KEY WORDS: Metastability; Metropolis Markov chains; tunneling time; saddle
configurations; gates; Ising model.



1. INTRODUCTION AND PRELIMINARY DISCUSSION

In recent years an increasing interest has been addressed to the rigorous
study of metastability in the framework of the ‘‘pathwise approach’’ (see
refs. 7 and 29). After the pioneering papers, (25, 26) that refer to Glauber
dynamics for standard 2D Ising model, in finite volume and very low tem-
perature, several other models have been considered, in the same asymp-
totic regime (see refs. 2, 8–11, 15–18, 23), aiming to describe various
aspects of the transition from metastability to stability. From a physical
point of view, these works refer to the study of local aspects of nucleation
of the stable phase, at very low temperature. Mathematically, the meta-
stable behavior in this regime is related to the first exit problem, from
suitable domains, for a class of Freidlin–Wentzell (F-W) Markov chains
(see ref. 12, p. 176). These are characterized by a finite state space and
transition probabilities that are exponentially small in a large parameter b

(representing, in many applications, the inverse temperature). Other, perhaps
more interesting, asymptotic regimes have also been considered, like infi-
nite volume at very low temperature (see refs. 13, 14, 20, and 21), or fixed
low temperature at very small magnetic field (see refs. 31 and 34).

We refer to refs. 29 and 30 for a general rigorous discussion of meta-
stability.

From the point of view of general probability theory, the first exit
problem in the Freidlin–Wentzell regime is nowadays well understood.
A good control of the first exit time and of typical exit paths is possible in
terms of the exponential rates in b of the transition probabilities via large
deviation theory. While the general strategy is well known, in many appli-
cations relevant for statistical mechanics, the specific model-dependent
problems are far from being solved.

In other words, the general theory is not applicable in many concrete
cases, since the needed detailed control on the specific Markov chain is too
difficult to obtain. This fact reopens the problem also from the point of
view of the general theory, making important to understand what is the
minimal information on the process that is necessary to obtain each specific
result.

In this note we discuss this problem and we propose a simple approach
to the study of metastability for general Metropolis Markov chains, having
in mind applications to stochastic dynamics for lattice spin systems. This
allows to extract from the full description of the process the most relevant
information about the tunnelling time and the critical configurations by
only requiring a rough analysis of the energy landscape. This approach
has been recently used in some cases of conservative stochastic evolution
like 3D Kawasaki dynamics (see ref. 16) or the anisotropic version of 2D
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Kawasaki dynamics (see ref. 24), where the conservation law makes the
mechanism of decay from metastability more subtle. Here we want to sys-
tematically describe our strategy within a critical discussion of results and
tools commonly used in the study of metastability. We will use the simple
and well known case of Glauber–Metropolis dynamics for standard 2D
Ising model, as an example to explain our approach.

Let us introduce the setup: We consider ergodic aperiodic Markov
chains with finite state space X and transition probabilities P(g, gŒ) satisfy-
ing the detailed balance condition

m(g) P(g, gŒ)=m(gŒ) P(gŒ, g), (1.1)

with respect to the Gibbs measure

m(g)=
e−bH(g)

;gŒ ¥X e−bH(gŒ)
, (1.2)

with H: XQ R an assigned energy function.
For simplicity we consider the Metropolis choice: for gŒ ] g we take

P(gŒ, g)=q(gŒ, g) e−b[H(g)−H(gŒ)]+, (1.3)

where [ · ]+ denotes the positive part and q(gŒ, g) is a connectivity matrix
independent of b.

We will denote by sgt the Markov chain at time t ¥N starting from g

at t=0.
In this context, the problem of metastability is the study of the first

arrival of the process sg0t to the stable state g s, corresponding to the
absolute minimum of H, (or to the set X s of absolute minima of H) when
starting from an initial local minimum g0: we speak of tunnelling between
g0 and g s.

Local minima can be ordered in terms of their increasing stability level,
i.e., the height of the barrier separating them from lower energy states.
A particularly relevant case is when g0 turns out to be in the set Xm of local
minima of maximal stability in X0X s, also called set of ‘‘metastable states’’
(see (2.12) later). The study of the transition between Xm and X s constitutes
the most typical metastability problem. However, we want to stress that,
establishing that a given local minimum g0 is a metastable state (in the
above sense) is one of the main points to be settled when studying the tun-
nelling between g0 and X s.

For g ¥X, A ıX, let

ygA :=min{t > 0; sgt ¥A} (1.4)
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be the first hitting time to A for the process sgt starting from g. We call y
g0
X
s

tunnelling time.
There are, mainly, two different aspects in the problem of the decay

from g0 to X s:

1. The asymptotic behavior for large b of the tunnelling time,
expressed as

lim
bQ.

P(e (C− e) b [ y
g0
X
s [ e (C+e) b)=1, (1.5)

for a suitable C > 0 and arbitrary e > 0. Clearly, this corresponds to the
convergence in probability (as b Q.) of the random variables Xb :=
1
b

ln(yg0
X
s) to C as b tends to infinity. It is also interesting to analyze the

asymptotic behavior in L1 and in law (with a proper normalization).
2. The tube of typical paths realizing the tunnelling.
To describe the typical transition pattern during the first excursion

between g0 and X s, we are interested in determining the minimal tube of
paths going for the first time from g0 to X s, still having a probability
exponentially close to one.

The general approach to the first exit problem for F-W Markov
chains (6, 12, 27, 28, 32) is based on the notion of cycle, i.e., a maximal connected
component of the set of states lying below a given energy (see (2.7) for a
formal definition). A cycle C is characterized by the property that, with a
probability exponentially close to one, starting from any state g ¥ C, our
process visits every state in C before exiting from C. It is possible to control
the asymptotic behavior, for large b, of the first exit time from a cycle, in
probability, in L1 and in law, in terms of the depth of the cycle, i.e., the
difference between the minimal energy in the external boundary “C (i.e.,
the set in Cc connected to C in one step of the dynamics) and the energy of
the ground state of the cycle. Moreover, it is also possible to give signifi-
cant estimates on the probability distribution of the first exit state (see
Theorem 2.17 later).

By regarding single states as trivial cycles, given a set A …X, we
can consider the decomposition of the set X0A into maximal cycles.
A sequence of cycles of this decomposition, in which each cycle is con-
nected with the following one in the sequence, is called a cycle-path. It is
natural to associate to a given cycle-path a tube of trajectories (of single
states) defined as the set of trajectories visiting the ordered sequence of
cycles given by the cycle-path. Cycle-paths describe tubes of trajectories
in which only the sequence of visited cycles is fixed while the time spent in
each cycle, and the corresponding piece of trajectory in the cycle, is
somehow free.
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In ref. 6, the notion of cycle-path has been introduced and developed
in the general non reversible case, and large deviation principles have been
proved for cycle-paths.

A cycle-path is called downhill if the height of the cycles (i.e., the
minimal energy on their boundary) is non-increasing. In ref. 27 particular
sets of downhill cycle-paths, called ‘‘standard cascades’’ are introduced and
it is shown that they define, via time-reversal, the tube of typical trajec-
tories exiting from a given cycle.

An alternative construction of typical first-exit cycle-paths is obtained
in ref. 28 for the general non reversible case, starting from the renor-
malization procedure in ref. 32. This procedure was introduced in order to
describe phenomena taking place in suitable, exponentially increasing, time
scales. For this purpose a complete classification of the states in X was
introduced, in terms of increasing stabilities, related to the increasing time-
scales. Starting from this classification, a sequence of renormalized Markov
chains, corresponding to the sequence of time scales, was introduced and,
in ref. 28, paths of the renormalized chain were associated to cycle-paths.

By using cycles and cycle-paths one can study the tunnelling time and
the tube of typical tunnelling paths. Indeed, let C(g0) be the maximal cycle
containing g0 such that C(g0) 5X s=”. We will call escape time the first
exit time y

g0
(C(g0))

c from the cycle C(g0).
Obviously, the escape time is smaller than the tunnelling time. In order

to study the escape time we can use well developed results about the first
exit from cycles (see Theorem 2.17 later), giving, in this way, a lower esti-
mate of the tunnelling time. On the other hand, an upper estimate easily
follows once we know that, after the escape time, with high probability for
large b, the process hits X s in a relatively short time. So, we get that escape
and tunnelling times are of the same order, once we are able to prove that,
with high probability for large b, the cycles visited by the process st for
t ¥ (yg0(C(g0))c, y

g0
X
s) have a depth smaller than or equal to the one of C(g0).

This is not true in general: in the case of the dynamical Blume–Capel
model, for suitable values of the parameters (see ref. 11), it happens that
the process, after escaping from C(g0), typically visits very deep wells
(deeper than C(g0)) so that the asymptotics of the tunnelling time is expo-
nentially larger (in b), than the one of the escape time.

This suggests two possible ways of proving that escape and tunnelling
times are of the same order: the first one requires the total absence of deep
wells in the whole space X; the second one needs a good control on the
tube T of typical paths4 exiting from C(g0) where the process typically

4 I.e., the set of cycle-paths typically followed during the tunnelling.

stays confined and requires that T does not contain deep wells. The first
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way involves a global control on the energy landscape, everywhere in X,
while the second one involves a detailed knowledge of the typical trajec-
tories realizing the transition.

The second way was adopted in many previous works on metastability
and, indeed, the lack of a global control of deep wells was the main reason
why in the previous approaches to metastability the two issues of the
asymptotics and the tube of typical paths were strictly connected. As we
will discuss later on, the presence of deep wells can induce different
asymptotics in probability and in L1.

We are now at the main point of the problem: How to construct, for a
concrete model, the cycle C(g0)? how to find the tube of typical paths
reaching X s? In other words, even if general tools to study metastability are
well developed, there is a highly non trivial model-dependent problem to
solve, in order to apply the general results on cycles and cycle-paths, when
discussing a concrete example.

Let us describe the basic features of the approach commonly used in
previous works on metastability. In refs. 9–11, 17, 18, and 23, X s consists
of a unique state, gs and an important step is to find a special set of
states D, representing in practice the subcritical states, i.e., initial states
starting from which the process visits g0 before g s, with high probability.
The process, while performing the tunnelling, has to cross, with high
probability, the boundary of D in a particular set of states, say P, where
the energy equals the communication height (see (2.5)) between g0 and g s.
Successively, it goes towards g s, following a well defined family of trajec-
tories, never being trapped inside deep cycles, so that the descent to g s is
relatively fast.

The set of trajectories realizing this descent can be described in terms
of a downhill cycle-path C1,..., Cn starting from C1 — C(g0) and ending in a
cycle Cn connected to Xs. A complete control of typical paths from P to Xs
amounts to know all downhill cycle-paths emerging from C(g0).

We can say that the approach above heavily relies on a precise
knowledge of the set P (that represents a narrow gate for the transition
from g0 to g s ) and of all typical future evolutions starting from any state
in P. In other words we need to know in detail the tube of typical trajec-
tories going from P to g s.

A different strategy was used in ref. 2, to find the asymptotics in
probability of the tunnelling time and the tube of typical paths. This strat-
egy is based on the analysis of the state space by means of its foliation into
manifolds at fixed number of plus spins. By looking at the minimal energy
barrier between contiguous manifolds, one obtains a control of the energy
landscape sufficient to find C(g0) and the tube of typical paths. This kind
of model-dependent discussion is sufficiently simple in cases, as the isotropic
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Glauber dynamics, where there are strong symmetries in the problem, but
becomes much more complicated in more general cases (we will discuss this
point in more detail in the final section).

Both these strategies require a very detailed knowledge of the energy
landscape; however, only a local analysis is needed around the typical tube
and no global control.

It is clear that without controlling the deep wells outside the tube, it is
impossible to conclude about the asymptotic behavior of the tunnelling
time in L1. Indeed, it is possible that with a small probability the process
visits a very deep well outside the tube, in such a way that, the asymptotics
in L1 becomes strictly larger than the one in probability. This is possible
when the probability to visit a deep well times the excess waiting time is
sufficiently large.

In the final section of this paper we will discuss in more detail these
approaches in connection with the ideas developed in the present paper.

In this note we discuss the different model-dependent inputs necessary
to obtain the different results and propose a simpler approach to solve the
problem of the asymptotics of the exit time and find partial results about
the tube. This approach is related to some of the ideas developed in ref. 32.
An important ingredient there, was a recurrence property of the process on
the set of states of a given stability in the corresponding exponentially long
time scale. In the present paper we do not need the whole detailed analysis
developed in ref. 32 but we still exploit the idea of proving a global recur-
rence to a suitable set of states. Indeed we show that absence of deep wells
has the effect of partially separating the problem of the asymptotics from
the problem of the typical tube. The absence of deep wells here is obtained
by proving a global recurrence. Indeed the total absence of deep wells is
equivalent to saying that g0 is a metastable state since the depth of C(g0) is
the maximal depth of the cycles not intersecting X s.

We will show that to study the tunnelling time, starting from a state g0,
it is sufficient (i) to solve the global min-max problem, i.e., to find the
height of the energy barrier between g0 and X s and (ii) to prove that for
any state g ¨ {g0} 2X s the energy barrier towards lower energy states is
lower than the energy barrier between g0 and X s, which is equivalent to
saying that g0 ¥Xm. This means that we are able to separate the control of
the tunnelling time (i.e., point 1) from the much more difficult control of
the tube of typical paths (i.e., point 2).

Recurrence property actually gives a control on the distribution tail of
the tunnelling time which implies the property of uniform integrability,
necessary to give also a control of the asymptotic behavior in L1. In this
sense, we can say that with our approach the model-dependent input is
minimized.
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We observe that inputs (i) and (ii) (together with some additional non-
degeneracy assumptions) correspond to the hypotheses required in ref. 5, to
apply the general method introduced in ref. 3 to Glauber dynamics. This
method is based on a very sharp control of the Laplace transforms of the
tunnelling times and does not even take into account the description of
typical trajectories. As we will see in Section 6.3, the results obtained in
refs. 3 and 5 are restricted to the tunnelling times and are for some respects
stronger than those obtained with our method. The relationship between
the two strategies is interesting by itself and we will come back to the topic
in the final section.

In the framework of our pathwise approach it is natural to study the
typical trajectories realizing the tunnelling between g0 and X s. These can be
described at different levels of detail, corresponding to different levels of
detail in the analysis of the energy landscape.

A central role in this description is played by the optimal paths, i.e., the
set of paths realizing the minimal value of the maximal energy in the paths
going from g0 to X s.

A first basic notion is the set of saddles S defined as the set of all
maxima in the optimal paths between g0 and Xs. In this note, we focus on
the subsets of saddles that are typically visited during the last excursion from
g0 to Xs. To this end, we introduce the gates from metastability to stability,
defined as the subsets of S that are visited by all the optimal paths.

We will see that the process, while performing the tunnelling, is likely
to follow one of the optimal paths. Therefore, gates are subsets of S that
are typically visited during the tunnelling.

The configurations in the minimal gates (minimal by inclusion) have
the physical meaning of ‘‘critical configurations’’ and are central objects
both from a probabilistic and from a physical point of view.

The structure of the minimal gates and their geometrical characteriza-
tion is therefore a crucial point in the description of the typical trajectories.
On the other hand, the hypotheses needed to discuss the gates are weaker
than the ones necessary to completely characterize the tube of typical
paths.

We remark that in several models analyzed in the literature in the
context of F-W Markov chains, the minimal gate was unique but, in general,
there may exist many minimal sets with the gate property, either distinct or
overlapping. In the present paper we shall analyze in detail the set of minimal
gates in some examples, without assuming, like in ref. 5, additional non-
degeneracy hypothesis, that simplify the structure of the gates.

It is clear that a crucial point in this analysis is to find out the mini-
mality of a given gate. To this end, we will provide a sufficient criterion in
Section 5.
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We provide also a characterization of the set G …S, defined as the
union of minimal gates, in terms of essential saddles. These are defined as
the states in S that cannot be avoided with a short-cut of an optimal path
(where a short-cut of a path w is a path wŒ whose set of maxima is a subset
of the set of maxima in w).

As an example to illustrate the treatment of gates, we will discuss in
detail the 2D Ising model in the high degenerate case corresponding to
2J/h integer. In this case we will find the set of all essential saddles and its
decomposition into minimal gates, revealing a quite complicated structure
(see Fig. 4 later).

The analysis of the properties of the minimal gates becomes particu-
larly interesting when related to the results about the pre-factors of the
mean tunnelling time given in ref. 5. This is an open problem posed by our
analysis and, though not completely solved in the present paper, it is widely
discussed in the final section. From this discussion, we can conclude, quite
surprisingly, that unessential saddles, not characterizing the typical behav-
ior of the process, may contribute to the pre-factors and that a weaker
notion of essentiality is needed to control the L1 estimates.

The rest of the paper is organized as follows:

• In Section 2 we give definitions and preliminary results.

• In Section 3 we study ‘‘recurrence property:’’

– In Theorem 3.1 we show that for any V > 0, e > 0, uniformly in
the starting state, the process typically visits within time eb(V+e) the set of
local minima with ‘‘stability level’’ larger than or equal to V (see (2.9));

– In Corollary 3.5 we discuss the implications of Theorem 3.1 on
uniform integrability.

• We use these results to control the tunnelling time, between a meta-
stable state and the set of stable states, in terms of the stability level of the
metastable states:

– In Theorem 4.1 we control the tunnelling time in probability;

– In Theorem 4.9 we give the corresponding result in L1;

– In Theorem 4.15, under the additional hypothesis of uniqueness
of the metastable state, we show that the (suitably normalized) tunnelling
time converges in law to a mean one exponential random variable.

• In order to implement these model-independent results in a specific
case, we give in Section 4.2 a general method to compute the communica-
tion height and to verify that a specific state is metastable.
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• As an example, we apply this method to the case of 2-d Ising model
with Metropolis dynamics in Section 4.3.

• In order to give a partial characterization of the tube of typical
paths realizing the tunnelling, we discuss in Section 5 the notions of
minimal gate and essential saddle:

– In Theorem 5.1 we relate these two concepts;

– In Theorem 5.4 we show that the process typically visits the gates
during the tunnelling.

• Our strategy to give a decomposition into minimal gates of the set of
essential saddles is based on:

– a necessary and sufficient condition for a gate to be minimal,
given in Section 5.3;

– a necessary condition for a saddle to be essential, given in Prop-
osition 5.8.

• In Section 5.4 we apply this strategy to study the 2-d Ising model
with Metropolis dynamics; in the degenerate case (2J/h integer) we find a
surprisingly rich structure of the minimal gates.

• In Section 6 we relate our results with other approaches:

– In Section 6.1 we compare our new approach with previous ones,
discussing in detail why the problems of the tunnelling time and of the tube
of typical paths were interconnected;

– In Section 6.2 we remark the differences between Glauber and
Metropolis dynamics;

– In Section 6.3 we relate our results about gates with the results in
ref. 5 about pre-factors of the mean tunnelling time; we propose a conjec-
ture that should be useful to give a weaker notion of essentiality that char-
acterizes the pre-factors.

2. DEFINITIONS AND PRELIMINARY RESULTS

We need some definitions.

• A path is a sequence w=(w1,..., wk), k ¥N, wi ¥X for i=1,..., k,
such that q(wi, wi+1) > 0 for i=1,..., k−1.

We write w: g Q gŒ to denote a path from g to gŒ.
Given z ¥X, we write z ¥ w when w visits z.
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• A set A ıX with |A| > 1 is connected if and only if for all g, gŒ ¥A

there exists a path w: g Q gŒ such that wi ¥A for all i. Every singleton is
connected.

We use A … B to mean A strictly contained in B.

• Given a non-empty set A …X, define its (external) boundary as

“A :={z ¨A : q(z, g) > 0 for some g ¥A} (2.1)

and its internal boundary as

“
−A :=“(Ac), (2.2)

where Ac :=X0A.

• The bottom F(A) of a non-empty set A ıX is the set of global
minima of the HamiltonianH in A, i.e.,

F(A)={g ¥A : H(g)=min
z ¥A

H(z)}. (2.3)

• For a set A whose points have the same energy, we denote (by an
abuse of notation) this energy by H(A).

• Given a function f: XQ R and a subset A ıX, we denote by

arg maxA f :={g ¥A : f(g)=max
t ¥A

f(t)} (2.4)

the set of points where the maximum of f in A is reached.

• The communication height between a pair g, gŒ ¥X is

F(g, gŒ)= min
w: gQ gŒ

max
z ¥ w
H(z). (2.5)

Given two non-empty sets A, B ıX, put

F(A, B)= min
g ¥A, gŒ ¥B

F(g, gŒ). (2.6)

• A non-trivial cycle is a connected set C such that

max
s ¥ C

H(s) < H(F(“C)). (2.7)

Any singleton that is not a non-trivial cycle is called trivial cycle.

• The following structure lemma is a well-known fact (see, e.g.,
ref. 27, Prop. 3.2):
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Lemma 2.8. For any pair of cycles C, CŒ such that C 5 CŒ ]”,
either C ı CŒ or C ‡ CŒ.

• We call stability level of a state z ¥X the energy barrier

Vz :=F(z, Iz)−H(z) (2.9)

where Iz is the set of states with energy below H(z):

Iz :={g ¥X : H(g) < H(z)}. (2.10)

We set Vz :=. if Iz is empty.

• We call stability level of a state z ¥X in a set A the energy barrier

VA
z :=F(z, Iz 5A)−H(z), (2.11)

setting VA
z :=. if Iz 5A is empty.

• The set X s :=F(X) of the global minima of the hamiltonian is
called set of stable states.

• The set of metastable states is given by

Xm :={g ¥X : Vg= max
z ¥X0X

s
Vz}. (2.12)

• We call metastable set at level V the set of all states with stability
level larger than V:

XV :={g ¥X : Vg > V}. (2.13)

We denote by C the stability level of the states in Xm.

• The depth of a cycle C is given by

D(C) :=[H(F(“C))−H(F(C))]+. (2.14)

• For a non-trivial cycle C, we set U(C) :=F(“C); for a trivial cycle C,
we set U(C) :=C. We call H(U(C)) height of the cycle C.

• We call maximal internal resistance G(C) the maximal depth of the
sub-cycles of C that do not contain the whole F(C):

G(C) := max
cycles CŒ … C;
CŒ^‡F(C)

D(CŒ). (2.15)
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An immediate consequence of the definition of cycles is that for any
g, gŒ in a given cycle C

F(g, gŒ) < F(C, Cc). (2.16)

It is possible to show that this implies that, with probability exponen-
tially close to one, every state in the cycle is visited before the exit from the
cycle, and that the exit time is of order ebD(C). More precisely, the main
result of ref. 27, Prop. 3.7 is contained in the following

Theorem 2.17. Let us consider a non-trivial cycle C and let
D :=D(C) be its depth. For any g ¥ C, t ¥ “C e, eŒ > 0, d ¥ (0, e), for yg

“C as
in (1.4), and all sufficiently large b

P(yg
“C < e

b(D+e); yg
“C=ygt) \ e

−b(H(t)−H(U(C))+eŒ) (2.18)

P(yg
“C > e

b(D− e)) \ 1−e−bd. (2.19)

Moreover there exists o > 0 such that for all g, gŒ ¥ C and all sufficiently
large b:

P(yggŒ < yg
“C) \ 1−e

−bo. (2.20)

See ref. 27 for the proof; see also refs. 6, 12, and 28 for similar results.
We need here some other definitions.

• The set of minimal saddles between g, gŒ ¥X is defined as

S(g, gŒ)={z ¥X : ,w: g Q gŒ, w ¦ z : max
t ¥ w
H(t)=H(z)=F(g, gŒ)}.

(2.21)

S(A, B)= 0
g ¥A, gŒ ¥B:

F(g, gŒ)=F(A, B)

S(g, gŒ). (2.22)

• We write

(AQB)opt (2.23)

to denote the set of optimal paths, i.e., the set of all paths from A to B

realizing the min-max in X between A and B.

• Given a pair g, gŒ ¥X, we say that W —W(g, gŒ) is a gate for
the transition g Q gŒ if W(g, gŒ) ıS(g, gŒ) and w 5W ]” for all w ¥

(g Q gŒ)opt.
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• We say that W is a minimal gate for the transition g Q gŒ if it is a
gate and for any WŒ …W there exists wŒ ¥ (g Q gŒ)opt such that wŒ 5WŒ

=”. In words, a minimal gate is a minimal (by inclusion) subset of
S(g, gŒ) that is visited by all optimal paths.

For a given pair g, gŒ, there may be several disjoint minimal gates. We
denote by G(g, gŒ) the union of all the minimal gates:

G(g, gŒ)= 0
W:W minimal gate for (g, gŒ)

W. (2.24)

Obviously, G(s, sŒ) ıS(s, sŒ) and S(s, sŒ) is a gate (but in general it is
not minimal). The configurations z ¥S(g, gŒ)0G(g, gŒ) (if any) are called
dead-ends.

• A saddle z ¥S(g, gŒ) is called unessential if for any w ¥ (g Q gŒ)opt
such that w 5 z ]” we have {arg maxw H}0{z} ]” and there exists
wŒ ¥ (g Q gŒ)opt such that {arg maxwŒ H} ı {arg maxw H}0{z} (see (2.4)
for the definition of arg max).

• A saddle z ¥S(g, gŒ) is called essential if it is not unessential, i.e., if
either

(i) there exists w ¥ (g Q gŒ)opt such that {arg maxw H}={z} or
(ii) there exists w ¥ (g Q gŒ)opt such that {arg maxw H} ‡ {z} and

{arg maxwŒ H} ł {arg maxw H}0{z} for all wŒ ¥ (g Q gŒ)opt.

• Given A …X and g ¥X0A, we consider the sets

CA(g) :=g 2 {z: F(g, z) < F(g,A)}. (2.25)

These sets are either trivial cycles coinciding with g (in case F(g,A)
=H(g)) or non-trivial cycles containing g (in case F(g,A) > H(g)).
Notice that H(U(CA(g))) — F(g,A) and that CA(g) ıX0A. We imme-
diately see that if gŒ ¥ CA(g) then CA(gŒ)=CA(g).

Lemma 2.26. Given A …X, the sets {CA(g)}g ¥X0A in (2.25) form
the partition into maximal cycles of X0A:

0
i
Ci=X0A, Ci 5 Cj=” -i ] j and -i ,g s.t. Ci=CA(g).

(2.27)

Proof. It is immediate to see that for any z ¥X0A, z ¥ CA(z). We
know by Lemma 2.8, that two overlapping cycles either coincide or are
included into each other. Thus, to conclude the proof it is sufficient to
show that CA(g) are maximal cycles in X0A. For, suppose CŒ be a cycle
strictly containing CA(g), we necessarily have CŒ 5A ]”, contradicting
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the fact that CŒ …X0A. Indeed, CŒ contains a point z in “CA(g) with
H(z) \ F(g,A) and every optimal path w ¥ (g QA)opt is contained in CŒ,
since H(U(CŒ)) > F(g,A) and CŒ ¦ g. L

We refer to ref. 6 for a definition of decomposition into maximal
cycles in a more general setting.

• A sequence of cycles C0,..., Cn is called downhill cycle-path if the
cycles are pairwise connected with decreasing height; namely, such that
H(U(Ci)) \H(U(Ci+1)) for each i ¥ {0,..., n−1}. Notice that the prede-
cessor and the successor of a non-trivial cycle in a cycle path must be trivial
cycles.

Notice that the probability that the process exiting from Ci goes to
Ci+1 is not exponentially small: when Ci is a non-trivial cycle this fact can
be seen by using Theorem 2.17, if Ci is a trivial cycle, it is a direct conse-
quence of the definition of the dynamics.

The key property of the partition in (2.27) is that, any C0 in the parti-
tion can be joined with A by a downhill cycle-path made of cycles in the
partition.

Lemma 2.28. For any g ¥X and A …X, there exists a finite down-
hill cycle-path C0,..., Cn such that g ¥ C0 and Cn is a singleton in A.

Proof. We consider the case where g ¨A, otherwise there is nothing
to prove. We give an algorithm to construct the aforementioned downhill
cycle-path by using the partition in (2.27). More precisely, we construct a
path w: g QA by joining pieces of optimal paths w (i) ¥ (gi Q gi+1)opt for
suitably defined {gi}i ¥N. The sets CA(gi) will form our downhill cycle-path:

1. SET g0 :=g

2. pick a self-avoiding5 optimal path w (1) ¥ (g0 QA)opt

5 Self-avoiding paths can be obtained from general paths by removing the loops in the order
they appear.

3. FOR i \ 1
4. SET gi :=w (i)k , where k :=min{n: w (i)n ¨ CA(gi−1)}
5. IF gi ¥A, STOP
6. IF F(gi,A)=F(gi−1,A), THEN

w (i+1)n :=w (i)k+n;
ELSE

pick a self-avoiding optimal path w (i+1) ¥ (gi QA)opt
7. NEXT i.
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The key point in this construction is that we keep using the same path until
the communication height F(gi+1,A) changes; since self-avoiding paths
are finite, condition 6 can hold for a finite number of indices i for each of
these paths. When changing the path, F(gi+1,A) must decrease since gi
and gi+1 belong to the same optimal path w (i) ¥ (gi QA)opt, implying

F(gi,A)=max{F(gi, gi+1), F(gi+1,A)} \ F(gi+1,A). (2.29)

By the finiteness of X and the monotonicity of F(gi,A), we see that the
whole sequence of cycles {CA(gi)}i is finite. L

• A function b Q f(b) is called super-exponentially small (ses) if

lim
bQ.

1
b

log f(b)=−.. (2.30)

2.1. The Ising Model

We will use the standard 2D Ising model with Metropolis dynamics as
an example to clarify our approach. Let us give some definitions:

• For x=(x1, x2) ¥ Z2, we will use the norms ||x||n :=(|x1 |n+|x2 |n)
1
n

and ||x||. :=max i=1, 2 |xi |.

• Let L be a two dimensional torus with a sufficiently large side-lengthL.
A configuration is a function s: L Q {−1,+1}. With each configuration
s ¥XI :={−1,+1}L we associate an energy given by the Hamiltonian

E(s) :=−
J
2

C
{x, y} … L :
||x−y||1=1

s(x) s(y)−
h
2

C
x ¥ L

s(x). (2.31)

We take the external magnetic field h
2 > 0 and J > 0.

We set

H(s) :=E(s)−E(− 1). (2.32)

• The dynamics is defined via the Metropolis algorithm given in (1.3),
where q(s, g), for all s ] g, is

q(s, g) :=˛
1
|L| if ,x ¥ L : sx=g,

0 otherwise
(2.33)
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where

sx(z)=˛s(z) if z ] x,

−s(x) if z=x.
(2.34)

• Let

N+(s)=C
x ¥ L

s(x)+1
2

(2.35)

be the number of plus spins in the configuration s.

• Given a configuration s ¥XI, consider the set C(s) ı R2 defined as
the union of the closed unit cubes centered at sites x such that s(x)=1.
The maximal connected components C1,..., Cm, m ¥N, of C(s) are called
clusters of s. We often identify s with C(s).

• We denote by “C the boundary of C as a subset of the two dimen-
sional torus of side length L in R2. For s ¥XI, let c(s)=1m

i=1 “Ci be the
boundary of s and |c(s)| :=;m

i=1 |“Ci | the perimeter of s. |c(s)| equals the
number of pairs of n.n. sites with opposite spin in s. It is immediate to see
that the energy of a configuration in the Ising model is

H(s)=J |c(s)|−hN+(s). (2.36)

• − 1, 1 are respectively the configurations in which all the spins have
value −1,+1.

3. RECURRENCE TOXV

A crucial property of our Markov chains is that with probability super-
exponentially close to one, starting from any point in X the process visits XV
(the metastable set at level V defined in (2.13)) within a time of order ebV.
We will prove this result in Theorem 3.1, by using Theorem 2.17.

This recurrence property can be considered the key ingredient of our
results on metastability.

Theorem 3.1. For any e > 0 and sufficiently large b

sup
g ¥X

P(ygXV > e
b(V+e))=ses. (3.2)

Proof. We use the partition in (2.27) with A=XV and Lemma 2.28
to show that there exists a finite downhill cycle-path from CXV

(g) to XV.
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Since none of the cycles in the downhill cycle-path can contain states in XV,
all these cycles have depth not larger than V.

By using Theorem 2.17 we get that the probability to reach XV within
eb(V+e/2) is uniformly larger than e−beŒ for any eŒ > 0 and sufficiently large b.
Indeed, the cycles in the downhill cycle-path are pairwise connected in such
a way that the probability to pass from an element of the cycle-path to the
following one, within a time eb(V+e/4), is larger than e−beœ for any eœ > 0 and
sufficiently large b; moreover, their number is bounded independently of b

by |X|. So that by Theorem 2.17 we get

P(ygXV < e
b(V+ e

2
)) \ e−beŒ. (3.3)

A standard iteration of this estimate (based on Markov property) proves
(3.2):

P(ygXV > e
b(V+e)) [ 1 sup

gŒ ¨XV

P(ygŒXV > e
b(V+ e

2
))2

eb
e
2

=ses. L (3.4)

An immediate consequence of the previous theorem, applied to V=
C :=VXm, is the following:

Corollary 3.5. For any d > 0, the variables Ygb :=ygXse
−(C+d) b are

uniformly integrable that is, there exists b0 sufficiently large such that for
any e > 0 there exists K ¥ [0,.) such that for any b > b0

sup
g ¥X

E(Ygb1{Ygb > K}) < e. (3.6)

Proof. It is sufficient to have an exponential control on the tail of
the distribution:

sup
g ¥X

P(ygXse
−(C+d) b > n) < 2−n (3.7)

for any sufficiently large b. This estimate can be obtained as in (3.4), since
XC=X s and -d > 0

sup
g ¥X

P(ygXse
−(C+d) b > n) [ (sup

gŒ ¨X
s
P(ygŒXs > e

(C+d) b))n < 2−n, (3.8)

where we used Theorem 3.1 to get the last inequality. L

Remark 3.9. We note that it is possible to prove a recurrence result
similar to Theorem 3.1 also if we consider the recurrence to a given state
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in X s. This is important when studying the tunnelling problem between
stable states. More precisely, let g1 ¥X s and let G=G(X) the maximal
internal resistance defined in (2.15). By using Lemma 2.28 and the argu-
ments of proof of Theorem 3.1, we can prove that

sup
g ¥X

P(ygg1 > e
b(G+e))=ses (3.10)

for any e > 0 and b sufficiently large.

4. ASYMPTOTICS OF TUNNELLING TIME

In this section we give results on the asymptotics of the tunnelling
time. We first obtain general results and then we discuss how to apply them
to concrete models. We conclude this section by discussing the example of
the Ising model.

4.1. General Results

We study the tunnelling time y
g0
X
s by giving results in probability

(in Theorems 4.1 and 4.5), on the asymptotics of the expectation
(in Theorem 4.9) and on the convergence in law (in Theorem 4.15).

Notice that in some cases where a global description of the energy
landscape is not given it is still possible to give results in probability, but
neither in law nor in L1.

Let us first consider the case g0 ¥Xm.

Theorem 4.1. Let g0 ¥Xm and C :=Vg0 Then, for any d > 0, there
exist b0 and K > 0 such that for any b > b0

P(yg0
X
s < eb(C−d)) < e−Kb (4.2)

P(yg0
X
s > eb(C+d))=ses. (4.3)

Proof. (4.2) is a consequence of (2.19) when C={t: F(t, g0) <
F(g0, X s)}, since y

g0
X
s > y

g0
“C

.
(4.3) is just a particular case of Theorem 3.1 when V=C. In this case

XV coincides with X s. L

Remark 4.4. As noted at the end of the previous section, in the case
of several stable states, we can obtain a similar result for the tunnelling
time yg0g1 between stable states g0, g1, by substituting C with the maximal
internal resistance G(X).
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In some cases, where a global characterization of the metastable sets is
missing, we can use a slightly weaker version of Theorem 4.1. The idea is to
control stable and metastable states only locally. More precisely, suppose
to be able to find a habitat, defined as a set A such that there exist KA > 0,
b0 > 0 such that for any g ¥A0F(A) we have P(ygF(A) < yg“A) \ 1−e

−KAb

for all b > b0. Notice that, by definitions (2.9) and (2.11), for any g in a
habitat A either VA

g =. or VA
g =Vg. Indeed, if VA

g > Vg, we immediately
see that the cycle CIg 5A(g) has non-empty intersection with Ig 5Ac. By
Theorem 2.17 P(ygF(CIg 5A(g))

< ygIh 5A)Q 1, contradicting the definition of
habitat. Examples of habitats are given by basins of attraction, cycles and
suitable sets of downhill cycle paths.

Theorem 4.5. Let A be a habitat and let V(A) :=max g ¥A0F(A) V
A
g

be the maximal stability level in A. Let g ¥A with VA
g =V(A).

Then, for all e > 0, for some o > 0 and b sufficiently large

P(eb(V(A)− e) < ygF(A) < e
b(V(A)+e)) \ 1−e−bo (4.6)

that is, g ‘‘plays the role of a metastable state relatively to A.’’

Proof. Let us start to prove that P(ygF(A) \ e
b(V+e)) is exponentially

small. The proof is very similar to that of Theorem 3.1.

P(ygF(A) > e
b(V+e)) [ P(ygF(A)=ygF(A) 2 “A > e

b(V+e))+P(yg“A < ygF(A)).
(4.7)

By Lemma 2.28, there exists d > 0 such that

P(yzF(A) < yz“A; y
z
F(A) < e

b(V+ e
2
)) \ e−bd. (4.8)

Hence, a standard iteration argument like in (3.4) shows that the first term
in (4.7) is super-exponentially small; the second one is the leading term and
it is exponentially small by definition of habitat.

On the other hand, since for any t in F(A) the depth of Ct(g) is V,
by (2.19) we see that P(ygF(A) < e

b(V− e)) [ P(yg“Ct(g) < e
b(V− e)) [ e−bd for any

d ¥ (0, e) and sufficiently large b. L

A different characterization of the tunnelling time is given by the
following theorem:

Theorem 4.9. For any g0 ¥Xm,

lim
bQ.

1
b

log Ey
g0
X
s=C. (4.10)
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Proof. By Theorem 4.1 we know that, for each d > 0, the variables
Yb :=ygXse

−(C+d) b tend to zero in probability, moreover by Corollary 3.5
they are uniformly integrable. This implies that they tend to zero also
in L1, that is

E(|Yg0b |)Q 0. (4.11)

Hence, there exists b0 such that for any b > b0

Ey
g0
X
s < e (C+d) b. (4.12)

The estimate

Ey
g0
X
s > e (C−d) b, (4.13)

valid for any d > 0 and sufficiently large b, immediately follows by
Theorem 4.1 since

Ey
g0
X
s > e (C−d) bP(yg0

X
s > e (C−d) b) \ e (C−d) b(1−e−Kb). (4.14)

By using that d is arbitrary, by (4.12) and (4.13) we obtain (4.10). L

We remark that in the previous theorem the hypothesis g0 ¥Xm (often
called ‘‘absence of deep wells’’) is not necessary and can be easily substi-
tuted by g0 is such that -g ¨X s with Vg > Vg0 , H(g) > H(g0) that can be
called ‘‘absence of dangerous wells.’’ This property is also ‘‘global’’ since it
requires the analysis of the whole energy landscape.

Theorem 4.15. Suppose there exists a state g0, such that Tb :=
inf{n \ 1 : P(yg0

X
s [ n) \ 1−e−1} tends to infinity with b. Moreover suppose

that there exist T −b and db such that for all g ¥X

P(yg{g0, Xs} > T
−

b) [ db with lim
bQ.

T −b
Tb
=0 and lim

bQ.
db=0, (4.16)

then, for any d > 0,

lim
bQ.

P(yg0
X
s > tTb)=e−t (4.17)

and

lim
bQ.

E(yg0
X
s)

Tb
=1. (4.18)
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Proof. Let yg(t) :=inf{s \ tTb : ss ¥ {g0, X s}} be the first hitting
time to {g0, X s} after tTb.

P(yg0
X
s > (t+s) Tb)

=P(yg0
X
s > (t+s) Tb; yg(t) [ tTb+T

−

b)

+P(yg0
X
s > (t+s) Tb; yg(t) > tTb+T

−

b)

=C
T −b

u=0
P(yg(t)=tTb+u; y

g0
X
s > tTb+u) P(y

g0
X
s > sTb−u)

+ C
g ¥ {g0, X

s}c
P(yg0

X
s > tTb; stTb=g) P(ygXs > sTb; y

g

{g0, X
s} > T

−

b), (4.19)

where we used Markov property at time tTb+u, and the fact that
y
g0
X
s > yg(t) implies sy*(t)=g0.

Clearly, by (4.16),

l.h.s. of (4.19)

\ [P(yg0
X
s > tTb+T

−

b)−P(y
g0
X
s > tTb+T

−

b; y
g(t) > tTb+T

−

b)] P(y
g0
X
s > sTb)

\ [P(yg0
X
s > tTb+T

−

b)−db] P(y
g0
X
s > sTb) (4.20)

and

l.h.s. of (4.19) [ P(yg0
X
s > tTb)[P(y

g0
X
s > sTb−T

−

b)+db]. (4.21)

Let b0 be such that T −b [ Tb for all b \ b0. Thus for any integer k \ 2
we write

P(yg0
X
s > (k+2) Tb) [ P(yg0

X
s > kTb)(db+P(yg0

X
s > Tb)) (4.22)

and taking r :=2e−1 we may assume that db+P(yg0
X
s > Tb) [ db+e−1 [

r < 1, for each b \ b0. Thus, for each b \ b0 and each k \ 3 we get

P(yg0
X
s > kTb) [ r[k/2] (4.23)

which immediately implies the tightness of the family {yg0
X
s/Tb}, on

[0,+.). Let us call Jb the family of random variables y
g
Xs

Tb
.

From (4.21) it follows that if the random variable Ĵ is the limit in
distribution of a subsequence Jbk then

P(Ĵ > t+s)=P(Ĵ > t) P(Ĵ > s) (4.24)
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for any s, t > 0 which are continuity points for the distribution of y
g0
X
s.

From the density of such points, and the right-continuity of the distribu-
tion function, we conclude the validity of (4.24) for all s, t \ 0, and conse-
quently that P(Ĵ > t)=e−at, for all t > 0, where a=−log P(Ĵ > 1) ¥
(0,+.]. The case a=+. corresponds to Ĵ identically null; in our case
this is excluded from the definition of Tb, which implies at once:

P(Ĵ < 1)= lim
kQ+.

P(Jbk < 1) [ 1−e
−1 [ lim

kQ+.
P(Jbk [ 1)=P(Ĵ [ 1),

(4.25)

and since P(Ĵ [ 1)=P(Ĵ < 1), we conclude that a=1.
To conclude the proof of the theorem we write

Ey
g0
X
s

Tb
=
1
Tb

F
+.

0
P(yg0

X
s > s) ds=F

+.

0
P(yg0

X
s > Tbs) ds. (4.26)

Due to (4.23) we may apply the dominated convergence theorem, and so

lim
bQ+.

Ey
g0
X
s

Tb
=F

+.

0
lim
bQ+.

P(yg0
X
s > Tbs) ds=F

+.

0
e−s ds=1. L (4.27)

We remark that if Xm={g0}, hypothesis (4.16) is immediately verified.
Moreover if CX

s(g0), i.e., the maximal cycle containing g0 and not inter-
secting X s (see (2.25)), is the unique cycle of maximal depth in the decom-
position of X0X s (see Lemma 2.26), hypothesis (4.16) holds for any g in
this cycle. In general, when there are many metastable states hypothesis
(4.16) is not satisfied. More than that, it is possible to find examples where
even the statement of the theorem does not hold, namely, the asymptotic
law of the renormalized tunnelling time is not exponential. An example
where we expect an asymptotic gamma distribution can be found in the
framework of the probabilistic cellular automaton studied in ref. 10.
However, in the general case of many metastable states

(1) there are examples of g0 that does not satisfy the hypothesis of
the theorem, but nevertheless, we have asymptotic exponentiality of the
tunnelling time.

(2) we always have an exponential tail of the distribution and the
convergence in L1.

4.2. The Model-Dependent Input

We note that in order to apply the previous results to some concrete
model we need essentially two model-dependent inputs:
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(I) to determine the communication height F(g0, X s).

(II) to verify the hypothesis g0 ¥Xm;

As far as point (I) is concerned, a general criterion is to find a set of
states B satisfying the following:

(a) B is a connected set containing g0 with B 5X s=”

(b) there is a reference path wg: g0 QX s; namely, a path such that

{arg maxw* H} 5F(“B) ]”, (4.28)

i.e., such that the maximum of the energy in wg is reached in F(“B).

Indeed, point (a) gives the lower bound F(g0, X s) \H(F(“B)), while
the path wg, joining g0 with X s, gives the upper bound F(g0, X s) [
max i H(w

g
i ); by Eq. (4.28) the two bounds coincide.

As we will show in the next section, this criterion can also be used to
determine the gates.

Notice that there is no need to determine the domain of attraction of
Xm or X s (i.e., the set of initial configurations s.t. the process typically hits
Xm before, resp. after, X s). This is a crucial point since such a detailed
description of the energy landscape is often not possible. Instead, a rather
simple analysis can be used to find a suitable set B satisfying the above
mentioned criterion.

One of the ideas that were used to carry out this preliminary analysis
in some cases consists in a suitable foliation of the state space X into mani-
folds according to a given parameter (for instance the number of pluses of
the configuration, for the Ising model) so that the solution of point (I) can
be reduced to solve the min-max problems between contiguous manifolds
of the foliation. This method (used in refs. 2, 5, 15, 16, 22) suggests the
choice of the set B that we will make in the next subsection to treat the
Ising model.

As observed above, point (II) can be verified even locally in a habitat;
actually this is the way followed in many cases in the literature. Our pro-
posal in this paper is to find a global solution to this problem. We note
that the statement g0 ¥Xm is equivalent to the absence of too deep energy
wells in the sense that saying Vg [ Vg0 for each g ¨X s, is equivalent to
saying that the maximal depth of the cycles of the decomposition of X0X s,
is Vg0 . In many physically interesting cases (as shown for the Ising model)
if one guesses correctly the metastable state, it is easy to solve this point
with a very rough argument by constructing for each configuration
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g ¨X s a ‘‘reducing path’’ w: g Q gŒ with H(g) > H(gŒ) for which
max i H(wi)−H(g) [ Vg0 . Moreover, if the last inequality is strict for each
g ¨ g0 2X s, then we have that g0 is the unique metastable state, and we can
also apply Theorem 4.15.

4.3. The Ising Model

As an example, we apply the above procedure to the well known case
of 2D Ising model (see Section 2.1 for definitions). Without loss of gener-
ality, we set, here and in Section 5.4, J=1.

The first step is the determination of the communication height. We
use the criterion proposed in the previous section.

Theorem 4.29. F(−1, 1)=−h(ag(ag−1)+1)+4ag, where lg :=K2/hL.

Proof. We start by defining our reference path. Equation (2.36)
suggests that the best paths from − 1 to 1 are sequences of configurations
that are increasing clusters ‘‘as close as possible to squares.’’

We define the reference path wg: − 1 Q 1 by flipping the spin at the
origin and then filling (flipping the spins from minus to plus) consecutively
the shells

Si :={x ¥ L : ||x||.=i}, (4.30)

starting from the point (i, i−1) and continuing clockwise so that N+(wg
k )

=k.
All configurations in this path consist of a rectangle (either a square

l× l or a ‘‘quasi-square’’ l×(l−1)) possibly with one of the longest sides
not completely filled.

The maximum of the energy in wg between consecutive rectangles is
achieved in the configuration where the incomplete side contains exactly
one plus. For these configurations, the number of pluses is either k=l2+1
and H(wg

k )=−hl
2+4l+2−h or k=l(l−1)+1 and H(wg

k )=−hl
2+hl

+4l+2−h.
It is immediate to see that the maximum energy among these configu-

rations is achieved in kg :=ag(ag−1)+1. If 2/h is non-integer, this is the
only maximum, otherwise k=ag2+1 corresponds to the same energy.

We take the side-length L of the torus larger than kg+1.
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We define6

6 This set is suggested by the fact that our reference path wg crosses all manifolds
{t: N+(t)=k} (for k=0,..., L) in a state with minimal energy in that manifold. However,
we stress once again that we do not need to analyze the whole foliation but we can focus
only on the critical manifold.

B :={t: N+(t) < kg}. (4.31)

The theorem is proven once we show that H(F(“B))=H(wk*).
It is easy to show that the minimum of the energy on the manifolds

with fixed number of pluses is achieved only in configurations consisting of
a single cluster.7

7 This fact can be proved by using a suitable map that associates to a configuration with a set
of clusters a new configuration where the same clusters are attached to each other.

Moreover, it is immediate to see that the perimeter of a cluster is
larger than or equal to the perimeter of the rectangle circumscribed to the
cluster (this property can even be extended to configurations that wrap
around the torus, but we do not need to consider such configurations since
L > kg+1).

The perimeter of the cluster of pluses in wg
k* is 4ag. In order to prove

wg
k* ¥F(“B), we only have to show that there is no configuration with kg

pluses that is contained in a rectangle with perimeter 4ag−2 or smaller, but
this is immediate since 4ag−2 < 4`kg, being `kg the side-length of the
square with area kg (that is, the rectangle in R2 of minimal perimeter
among that of area kg). L

Our next step is to show that − 1 ¥Xm, namely the absence of deep
wells:

Theorem 4.32. Vg < V− 1 for any g ¨ {− 1, 1}, i.e., Xm={− 1}.

Proof. It is sufficient to focus on the local minima of the energy,
namely configurations where the pluses form rectangles (possibly encircling
the torus) such that the minimal distance ||x−y||1 between sites in different
rectangles (if they exist) is at least 2.

We distinguish two cases:

1. If there exists a rectangle of pluses with a side-length l strictly
smaller than ag, we consider the path that flips the spins in that side conse-
cutively starting from one corner and ending with the other corner. The
energy gap between the final and the initial configuration is lh−2 < 0.
Each step increases the energy by h, except the last one that lowers the
energy by 2−h. Since the energy gap between the highest point in the path

616 Manzo et al.



and the starting configuration is h(l−1) < 2−h, for all these configurations
Vg [ h(ag−2) < 2−h.

2. If there exists a rectangle of pluses with all sides larger than or
equal to ag, consider the path that flips consecutively the minus spins near
this side. The first step increases the energy by 2−h, while each consecutive
step lowers the energy by h. If the maximal side-length l is strictly larger
than ag, this path reduces the energy since 2−lh < 0. Otherwise, for a
square ag× ag, the final configuration of the above-defined path has the
same energy as g and contains a rectangle ag×(ag+1) full of pluses. Now,
either this rectangle does not interact with any other rectangle and we are
in the case already considered (so that we can decrease the energy by
iterating the construction), or it does interact and the energy can be
decreased by flipping one further minus to plus. The maximum energy of
the path is reached at the first step showing that Vg [ 2−h for all these
configurations.

Since every local minimum different from − 1 and from 1 falls in at
least one of the two cases above, we see that max g ¥X0{− 1, 1} Vg [ 2−h. This
implies that − 1=Xm. L

5. GATE

In this section we first discuss the relation between gates and essential
configurations. Then, we show that the process passes through a gate with
high probability and we discuss the minimality of the gates. We conclude
again with the example of the Ising model.

5.1. Essential Saddles and Gates

The following theorem shows that unessential configurations are dead-
ends:

Theorem 5.1. z ¥S(g, gŒ) is essential if and only if z ¥ G(g, gŒ).

Proof. Abbreviate S=S(g, gŒ), G=G(g, gŒ), W=(g Q gŒ)opt.
We first prove that z ¥ G implies z essential.
For, let W be a minimal gate containing z. It is immediate to see that

there exists a path w ¥ (g Q gŒ)opt such that w 5W=z; indeed, otherwise z

would not be pivotal for the minimal gate W.
We have either {arg maxw H}={z} and then z is essential, or

{arg maxw H} ‡ {z}, with {arg maxw H} 5W0{z}=”. In this last case
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no wŒ ¥ (g Q gŒ)opt can exist with {arg maxwŒ H} … {arg maxw H}0{z}
since all optimal paths going from g to gŒ must cross the gate W; thus,
again, z is essential.

Next, we prove that z ¥S essential implies z ¥ G, i.e., there exists a
minimal gate W containing z.

If there exists w ¥ W such that {arg maxw H}=z, then z must belong
to all minimal gates and hence to G. Thus, we may assume that, for all
w ¥ W with w ¦ z, we have {arg maxw H}0{z} ]”.

Since z is essential, we know that there exists w̄ ¦ t such that
{arg max w̄ H}0{z} ˝ {arg maxwŒ H} for any wŒ ¥ W.

Partition

W=Wz 2 Wc
z (5.2)

with Wz={w ¥ W : w ¦ z}, Wc
z=W0Wz.

We may assume that Wc
z ]”, otherwise z is obviously a minimal gate

and we are done. We know that wŒ 5SŒ ]” for all wŒ ¥ Wc
z, where SŒ :=

S0{arg max w̄ H} ]”. Let WŒ be a minimal gate for Wc
z inSŒ, i.e.,

WŒ ıSŒ,

wŒ 5WŒ ]” -wŒ ¥ (Wz)c,

-Wœ …WŒ ,wœ ¥ (Wz)c : wœ 5Wœ=”.

(5.3)

Such a WŒ certainly exists, since trivially SŒ is a gate for Wc
z in SŒ and

we can always extract from it a minimal gate in SŒ. We claim that
W=z 2WŒ is a minimal gate. Indeed, w 5W ]” for all w ¥ W, since
any w ¥ W not passing through WŒ must pass through z. Moreover, WŒ is
minimal because we cannot exclude any configuration from WŒ without
destroying the minimal gate property, nor can we exclude z, since
w̄ 5WŒ=” because WŒ ıSŒ and {arg max w̄ H} 5 {SŒ}=”. L

5.2. Crossing the Gates

Theorem 5.4. For any pair of states g, t, for any gate W —

W(g, t) ıS(g, t) there exists c > 0 such that

P(ygW > ygt) [ e
−bc (5.5)

for sufficiently large b.
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Proof. We can suppose the set of non-optimal paths w: g Q t non-
empty, otherwise P(ygW > ygt)=0; then,

do := min
w: gQ t

w ¨ (gQ t)opt

max
z ¥ w
H(z)− min

w ¥ (gQ t)opt
max
z ¥ w
H(z) (5.6)

is strictly larger than zero.
We consider the cycle C :={z: F(z, g) [H(W)+do2 }. By definition

this cycle contains both g and t. Moreover, it is impossible to go from g to
t without crossing W or exiting the cycle. Indeed, if w ¥ (g Q t)opt then
w crosses W, and if w ¨ (g Q t)opt then by definition of d0, w leaves the
cycle C.

We have:

P(ygW > ygt) [ P(ygt > yg
“C) [ e

−bc, (5.7)

where in the last inequality we used the cycle property in Theorem 2.17,
and c is a suitable constant. L

5.3. Reducing the Gates

A crucial information on the tube of critical paths is given by the set G
defined in (2.24).

The method proposed in Section 4.2 to implement the model-depen-
dent input, i.e., to find a set B satisfying (4.28), provides a gate given by
W=F(“B) 5S. In general W is neither minimal nor unique; however,
we can try to extract from it a minimal gate by eliminating dead-ends.

The criterion used in this analysis is based on the observation that a
gate W is minimal if and only if -g ¥W ,w ¥ (Xm

QX s)opt with w 5W

=g.
In more complex situations, we can make use of Theorem 5.1 and

identify the unessential saddles.
For z ¥S(g, gŒ), we call bypassing set of z with respect to the transi-

tion g Q gŒ a set A —Ag, gŒ(z) ¥X with the following properties:

1. A ¦ z

2. Â‡ {g, gŒ}

3. H(F(“A))=F(g, gŒ)

4. -zŒ, zœ ¥F(“A)2 (A5 {g, gŒ}) ,ŵ ¥ (zŒQ zœ)opt with arg max ŵ H
ŵ 5 (S(g, gŒ) 2 {g, gŒ})={zŒ, zœ}.
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Fig. 1. A counterexample where a bypassing set containing the unessential saddles z1 or z2
does not exist. H(N)=H(Q) > H(g) > H(h).

Proposition 5.8. A saddle z ¥S(g, gŒ) is unessential if there exists a
bypassing set Ag, gŒ(z)

Proof. It is sufficient to show that for any path w ¥ (g Q gŒ)opt with
z ¥ w there exists wŒ ¥ (g Q gŒ)opt with arg maxwŒ H ı {arg maxw H}0{z}.

Let zŒ and zœ be the first and the last states in “A 2 (A 5 {g, gŒ}) hit
by w, respectively.

Since w is optimal, zŒ and zœ are in F(“A) 2 (A 5 {g, gŒ}). We define
wŒ by substituting the sub-path of w that connects zŒ and zœ with ŵ. L

We stress that this condition is not necessary (see Fig. 1).

5.4. Gates for the Ising Model

The Ising model provides an excellent example of the procedures that
can be used to reduce the gate (see Theorem 5.10 later). Besides the well
known case 2/h non-integer (where the Ising model has a unique minimal
gate), we analyze here the case 2/h integer, where the structure of the gates
is rather complex (see Fig. 4).

We consider the Ising model in a torus with side-length L > kg.
Let Pm (resp. P −

m ) be the set of configurations where the pluses form a
rectangle ag×m with a unitary protuberance attached to one of the longest
(resp. shortest) sides (for m=ag, when the rectangle is a square, we set
Pa*=P −

a* ).
Let

Wa*−1 :=Pa*−1. (5.9)

Theorem 5.10. For 2/h non-integer, Wa*−1 is the unique minimal
gate, so that G —Wa*−1.

Proof. We consider the set B defined in (4.31) and prove that Pa*−1
is a gate in two steps:

(i) every optimal path in (− 1 Q 1)opt hits “B in Pa*−1 2P −

a*−1.
(ii) for any z in P −

a*−1 there is no optimal path in w ¥ (z Q 1)opt such
that w 5B=”.
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From (i) and (ii) we conclude that Pa*−1 is a gate. Indeed, from (i) we
have that every optimal path exiting from B visits the set Pa*−1 2P −

a*−1, on
the other hand, from (ii) we can conclude that in its last exit from B before
the first arrival to 1, every optimal path has to hit Pa*−1. Thus, Pa*−1 is a
gate.

(i) We use the fact that the minimum of the energy in the manifold
{g: N+(g)=kg−1} — “−B is unique (up to rotations and translations).8

8 We will refer at this technique as ‘‘focusing.’’

Indeed, we know that the minimum of the energy must be a single
cluster. The perimeter of the cluster of the pluses is larger than or equal to
the perimeter of the circumscribed rectangle. Let l1 and l2 be the side-
lengths of this rectangle. The minima of the energy are the configurations
that minimize l1+l2 with l1l2 \ kg−1.

It is easy to see that these configurations are rectangles ag×(ag−1).
The gap with every other configuration in “−B is at least 2 because the

perimeter is an even number.
But the energy gap between the rectangle ag×(ag−1) and the saddle is

2−h; thus, all configurations in “−B except the quasi-square ag×(ag−1)
have energy higher than F(− 1, 1).

Hence, only the configurations in “B that are neighbors of this quasi-
square can be essential saddles.

Among these, the only configurations with energy equal to F(− 1, 1)
are in Pa*−1 2P −

a*−1.
(ii) By contradiction, let z ¥P −

a*−1 and let w: z Q 1 be the optimal
path lying outside B.

Let n be the first time when wn has a plus spin outside the rectangle R
circumscribed to the pluses in z.

We see that H(wn)−H(wn−1) \ 2−h because a minus with at most
one plus neighbor is flipped in the transition.

On the other hand, kg [N+(wn−1) [ (ag−1)(ag+1) and the perimeter
of wn−1 is at least equal to the perimeter 2((ag−1)+(ag+1)) of the rec-
tangle R because the minuses in the rectangle are strictly less than ag−1
since wk ¨B for any k.

Thus, H(wn−1) \ −h(ag2−1)+4ag and H(wn) \ −hag2+4ag+2 >
F(− 1, 1).

To show that Pa*−1 is a minimal gate it is sufficient to exhibit for each
z ¥Pa*−1 an optimal path that touches “B only in z. Clearly, such a family
of paths can be obtained by modifying the updating order of the reference

On the Essential Features of Metastability 621



Fig. 2. Energy vs. volume for the (modified) reference path for h=4/9. The maximal
energy is reached only in z.

path wg between the quasi-square ag×(ag−1) and the square ag× ag (see
Fig. 2).

Since 2/h is non-integer, Pa*−1 is the only minimal gate because the
above defined reference paths reach the energy F(− 1, 1) only in Pa*−1. L

Let us now consider the case where 2/h is integer, all rectangles with a
side of length 2/h have the same energy 4/h=2(2/h+l)−h(2l/h). This
will give rise to a rich gate structure we are going to analyze.

Let

Wa* :=Pa*

Wm := 0
m

n=a*+1
Pn 2P −

m for m ¥ {ag+1,..., L−1}.
(5.11)

We set

H := 0
m ¥ {a*−1,..., L−2}

Wm. (5.12)

We will prove in Theorems 5.27 and 5.28 that the Wm’s are minimal
gates and G=H.

A simple argument could have been used in order to prove just the
identification G=H. Indeed it is possible to show that the configurations
in 1m ¥ {a*−1,..., L−2} Wm are essential saddles by using suitable modifications
of the reference path that cannot be short-cut. These paths can be obtained
modifying the reference path after reaching the square ag× ag by adding the
protuberances on the shortest sides instead of on the longest sides, when
needed (see Fig. 3). However, this description is not sufficient to investigate
the structure of the set G and to show that the Wm’s are minimal gates.

The more detailed analysis that we perform in order to get the mini-
mality of the Wm allows a satisfactory characterization of the set of critical
droplets and more generally of the tube of typical paths followed by the
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Fig. 3. Energy vs. volume for the (modified) reference path for h=2/5. The maximal
energy is reached in z, zŒ, zœ.

system during the transition. Indeed the critical droplets can be identified
with the sets Wm. It turns out that the supercritical growth of the stable 1
phase can begin starting from any rectangle lg×m with arbitrary m ¥

(lg,..., L−2). It is remarkable that the degeneracy generated by the choice
2/h ¥N gives rise to this arbitrariness in the shape of the critical rectangles.
Before touching Wl*−1 and after leaving H the system behaves similarly to
the case 2/h ¨N.

As we will argue in Section 6.4, the structure of G is crucial for the
computation of the pre-factor of the expectation of the tunnelling time as
outlined in ref. 5.

Unfortunately, the simple method used in Theorem 5.10 only allows to
show that Wa*−1, Wa* and Wa*+1 are minimal gates; for larger m’s the mani-
folds at fixed magnetization cease to be a good approximation of the
boundary of the ‘‘domain of attraction’’ of − 1.

We introduce the bootstrap percolation map in order to define suitable
sets Bm such that the gates Wm coincide with F(“Bm).

Given a configuration g ¥XI, we consider the configuration obtained
by flipping all the minus spins that have at least two plus nearest neigh-
bors; we iterate this procedure and, since the map is monotonic and the
volume is finite, we reach the final configuration (denoted by ḡ) in a finite
number of iterations. The map g Q ḡ is called bootstrap.

It is clear that there exists a downhill path w: g Q ḡ.
It is immediate to see that

H(ḡ) [H(g)−h d(g, ḡ), (5.13)

where d(g, gŒ) is the number of sites x where g(x) ] gŒ(x). Indeed,
g(x) [ ḡ(x) for every x while in each step of the updating procedure the
perimeter does not increase. Another direct consequence of the definition
of bootstrap is that the pluses in ḡ (if any) form non-interacting rectangles
namely, rectangles such that no site x in L exists with two n.n. contained in
these two rectangles. Moreover, all the configurations gŒ where the set of
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occupied sites is intermediate between the sets of occupied sites in g and
in ḡ, give the same ḡŒ — ḡ; thus, we are allowed to change the order in the
updating procedure without affecting the final configuration.

For l [ m < L, we consider the sets

Bl, m :={g: ḡ contains only rectangles of pluses with

smallest side-length [ l and largest side-length [ m}. (5.14)

The bootstrap percolation map, used in ref. 17 for the ‘‘anisotropic
Ising model’’ gives a very deep insight into the structure of the gates and no
reduction is needed. On the other hand, the analysis of the minima on the
sets “Bl, m defined with the help of this map is rather difficult.

In order to show that for ag−1 [ m [ L−2, F(“Ba*, m) —Wm, we start
proving the following

Lemma 5.15. Let Rl, m be the set of configurations in Bl, m that
consist of a set of non-interacting rectangles {a i1×a

i
2}i [ n with the following

properties:

max
e=1, 2

C
i [ n
a ie > m−n (5.16)

or

C
i [ n
a i1+a

i
2 > 2l (5.17)

or both.
Then, for l [ ag [ m [ L−2, we have H(F(Rl, m))=−hl(l+1)+4l+2

and the configurations in F(Rl, m) consist of a single rectangle l×m̂, where

m̂=l+1 if l < ag [ m

a
g+1 [ m̂ [ m if l=ag < m.

(5.18)

Proof. Let us denote by H(a, b) :=−hab+2(a+b) the energy asso-
ciated to a rectangle a×b. Notice that

“

“a
H(a, b)=−hb+2 \ 0Z b [ ag (=0Z b=ag). (5.19)

We will compare the energy of a generic g ¥Rl, m with the energy
associated to a particular rectangle in Rl, m of the form (l−d)×m or
l×(l+1+d), where d ¥N.
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• For g verifying (5.16), we compare it with a rectangle (l−d)×m: Let
l i :=min{a i1, a

i
2} and m i :=max{a i1, a

i
2}. We set lmax :=max i [ n l i.

H(g)=−h C
i [ n
l im i+2 C

i [ n
(l i+m i)

\ −hlmax C
i [ n
m i+2 1 lmax+(n−1)+C

i [ n
m i2 . (5.20)

By adding and subtracting 2m+hlmaxm, we have

r.h.s. of (5.20)=−hlmaxm+2(lmax+m)−(2−hlmax)1m− C
i [ n
m i2+2(n−1).

(5.21)

By (5.16), ;i [ n m i > m−n and thus, using that lmax [ lg,

r.h.s. of (5.21) \H(lmax, m)+(n−1) hlmax. (5.22)

Hence, the set of configurations of minimal energy in Rl, m verifying (5.16)
must contain a single rectangle of pluses, with maximum side-length m.
By (5.19), we get that the minimum of the energy associated to rectangles
(l−d)×m is −hlm+2l+2m and is associated to rectangles l×m. If
m > ag, these are the only minima, otherwise if m=lg all rectangles
(l−d)×m are associated to the same energy.

• For g verifying (5.17), we compare it with a rectangle l×(l+1+d):
Let us assume (without loss of generality) that ;i [ n a

i
1 [;i [ n a

i
2,

so that ;i [ n a
i
2 \ l+1. Let b i :=min{a i1, l}. Since, by definition of Rl, m,

a i1 > l implies a i2 [ l [ a
g, by (5.19) we have

H(g)=C
i [ n
H(a i1, a

i
2) \ C

i [ n
H(b i, a i2)=−h C

i [ n
b ia i2+2 C

i [ n
(b i+a i2).

(5.23)

Notice that ;i [ n b i+a
i
2 > 2l since either a i1 — b

i or ;i [ n a
i
2 >;i [ n b i \ l.

We set r :=l−;i [ n b i and distinguish two cases:

– if r < 0, by using bi [ l we have

r.h.s of (5.23) \ −hl C
i [ n
a i2+2 1 l−r+C

i [ n
a i2 2

=H 1 l, C
i [ n
a i2 2+2 |r| > H 1 l, C

i [ n
a i2 2 (5.24)
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– if r \ 0, we use that

l 1 C
j [ n
a j2−r2= C

i, j [ n
b ia j2+r 1 C

i [ n
(a i2−b

i)−r2

=C
i [ n
b ia i2+ C

i ] j [ n
b ia j2+r 1 C

i [ n
(a i2+b

i)−2l+r2

\ C
i [ n
a i2b

i+n(n−1)+r2, (5.25)

where we used (5.17) and we estimated the sum of the off-diagonal terms
by n(n−1). By (5.25), we can estimate −h;i [ n a

i
2b
i so we have

r.h.s of (5.23) \ −hl 1 C
i [ n
a i2−r2+hn(n−1)+hr2+2 1 l−r+C

i [ n
a i2 2

=H 1 l, C
i [ n
a i2−r2+hn(n−1)+hr2. (5.26)

Since ;i [ n a
i
2−r \ l+1, we see that the minimum of the energy among

configurations verifying (5.17) can only be achieved in a configuration
consisting of a single rectangle l×(l+1+d).

By (5.19), we get that the minimum of the energy associated to rec-
tangles l×(l+1+d) is −hl(l+1)+4l+2 and is reached for d=0. If l < ag,
these are the only minima and the energy of these configurations is lower
than the one of the rectangles l×m if m > l+1. Otherwise, if l=ag, all
rectangles l×(l+1+d) are associated to the same energy. L

Theorem 5.27. If 2/h is integer, for any m ¥ {ag−1,..., L−2} the
set Wm (see (5.9), (5.11)) is a minimal gate for the transition − 1 Q 1.

Proof. Our strategy is to prove that F(“Ba*−1, L−2)=Wa*−1 and
F(“Ba*, m)=Wm for any m ¥ {ag,..., L−2}.

Let tx denote the configuration obtained from t by flipping the spin at
site x.

Let us consider g ¥Bl, m with gx ¥F(“Bl, m).
Obviously, ḡ(x)=−1.
We observe that g=ḡ. Otherwise, H(gx) > H(gx)−H(g)+H(ḡ) >

H(ḡx) while ḡ ¥Bl, m and ḡx ¥ “Bl, m contradicting that H(gx) ¥F(“Bl, m).
Now, let R be a rectangle of pluses in g interacting with x. We see that

x must be a protuberance attached to R. Otherwise, there would exist
a protuberance y adjacent to x attached to R and either gy ¥ “Bl, m with
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Fig. 4. Structure of the minimal gates when 2/h is integer. The grey areas denote minimal
gates.

H(gy) < H(gx) or gy ¥Bl, m, gy
x
¥ “Bl, m with H(gyx) < H(gx). Hence,

H(gx)=H(g)+2−h.
Recall that Rl, m has been defined in Lemma 5.15, we see that g ¥Rl, m:

indeed, gx contains either a rectangle (l+a)×(l+b) with a, b \ 1 or a rec-
tangle a×(m+b) with a, b \ 1.

In the first case,

|c(gx)|=|c(g)|+2=2 C
i [ n
(a i1+a

i
2)+2 \ 4l+4;

in the second case, we assume (without loss of generality) that the length of
the north side of the rectangle is m+b. Then, there exists an interval larger
than or equal to m+b where each pair of adjacent columns contains at
least one plus in gx. Hence,

C
i [ n
a i1+n > m+b \ m+1.

We can use Lemma 5.15 to conclude the proof:

• For l=ag−1, m=L−2, g is a rectangle (ag−1)× ag and gx ¥Pa*−1,
since P −

a*−1 …Ba*−1, L−2.
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• For m=l=ag, g is a square ag× ag and F(“Ba*, a*)=Pg
a .

• For m > l=ag, g is a rectangle ag×m̂ where m̂ ¥ {ag+1, m}. If
m̂ < m, P −

m̂ …Ba*, m, if m̂=m we get F(“Ba*, m)=Wm.

This concludes the proof that F(“Ba*−1, L−2)=WL−2 and F(“Ba*, m)
=Wm. To prove that the Wm’s are minimal gates, we exhibit, for any
z ¥Wm, an optimal path that crosses Wm only in z. These paths can be
obtained by the following rule: wŒ ¥ (z Q − 1)opt is defined by flipping the
plus protuberance and then sequentially eroding the pluses on the shortest
sides of the rectangles w̄ −k. The path wœ ¥ (z Q 1)opt is defined by completing
the side where the protuberance is and then sequentially flipping the
minuses in the layer near one of the longest sides of the rectangles of
pluses. L

Theorem 5.28.

G=H. (5.29)

Proof. We have shown in Theorem 5.27 that H ı G, to conclude the
proof we show that H ` G. By Theorem 5.1, this is equivalent to show that
every g ¥S(− 1, 1)0H is unessential.

To this end, we use the sufficient condition given in Proposition 5.8
and exhibit a bypassing set A− 1, 1(g) for any saddle g in S(− 1, 1)0H.

The configuration ḡ consists of a set of rectangles of pluses (possibly
degenerate) l i×m i where l i [ m i. Let l(ḡ) :=max i l i and m(ḡ) :=max i m i.

We distinguish three cases:

(a) If l(ḡ) < ag and m(ḡ) < L−1, we set A :=Ba*−1, L−2.
(b) If l(ḡ)=ag and m(ḡ) < L−1, we set A as the set of all configu-

rations t with t̄=ḡ and such that every row and column of the rectangles
of pluses in ḡ has at least two plus sites in g.

(c) If l(ḡ) > ag or m(ḡ) \ L−1, we set A as (Ba*, L−2 2 “Ba*, L−2)c.
We now show that A is a bypassing set A− 1, 1(g).
In case (a), properties (1) and (2) in the definition of bypassing set

can be readily checked. In case (c) to prove property (1) we notice that
g ¨ “Bl*, L−2, otherwise by Theorem 5.27 and by g ¨H we have H(g) >
F(− 1, 1), against the hypothesis g ¥S(− 1, 1). Properties (3) and (4)
have already been proved in the proof of Theorem 5.27: we have that
F(“A)=Wa*−1 in case (a) and F(“A)=WL−2 in case (c). Moreover, we
showed that for any z ¥F(“A) there exists a suitable modification of the
reference paths wŒ(z) ¥ (z Q − 1)opt such that {arg maxwŒ H}={z} (resp.
wœ(z) ¥ (z Q 1)opt such that {arg maxwœ H}={z}); by joining these paths we
obtain the paths ŵ(zŒ, zœ) for any pair {zŒ, zœ} ıF(“A) 2 (A 5 {− 1, 1}).
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Let us focus on case (b). The point here is to show that g ¥A. We
start showing that ḡ contains a single cluster of pluses. Since g is a saddle,
it is not a local minimum and its energy is F(− 1, 1).

H(g)=2ag+2−h >C
n
H(ln, mn)= C

i: li=a*

Hi+HŒ, (5.30)

where HŒ is the energy associated with the rectangles with l j < ag and
Hi — 2ag is the energy associated with the ith rectangle when l i=ag. We
immediately get |{i: l i=ag}|=1 and, since the energy associated to the
rectangles with l j < ag is larger than 4−h, no such rectangle can exist.

Now we observe that every row and column of the rectangle ag×m(ḡ),
that is full of pluses in ḡ, has at least two pluses in g. By (5.13),

H(g)=2ag+h(ag−1) \H(ḡ)+hd(g, ḡ). (5.31)

By using H(ḡ)=2ag, from the previous inequality, we get

d(g, ḡ) [ ag−1. (5.32)

By direct inspection we see that the configurations with energy F(− 1, 1)
with only one plus in a row or column of the rectangle ag×m(ḡ) are in H.

Property (2) of the bypassing set A can be immediately checked. To
prove properties (3) and (4) we show that F(“A) …H and that from
each zŒ ¥F(“A) there exists a downhill path going to the configuration
ĝ :=F(A) consisting of a rectangle a(ḡ)×m(ḡ) by joining these paths we
obtain the paths ŵ(zŒ, zœ).

Let z ¥F(“A(g)) we distinguish two cases:

1. if z is a neighbor of a configuration zx ¥A with zx(x)=−1, we
immediately see that H(z) \H(ag, m(ḡ))+2−h and the minima are only
for z ¥Pm(g) 2P −

m(g); the path w̃: z Q ĝ consists in only one step.

2. if z is a neighbor of a configuration zx ¥A with zx(x)=+1, there
exists in z a row or column with only one plus. Clearly, H(z) \ 2−
h+H(l, m), where l=ag−1 or m=m(ḡ)−1. The minima are only for
z ¥P −

m(ḡ)−1; namely, the pluses in g form a rectangle ag×(m(ḡ)−1) with a
protuberance on one of the shortest sides. The path w̃: z Q ĝ consists in
filling the incomplete side of the rectangle ag×m(ḡ). L

6. FINAL DISCUSSION

As already discussed in the introduction, this paper is mainly moti-
vated by the need to give partial results about the metastable behavior of
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some models where we could not get a sufficiently good control of the
energy landscape. The effort of determining the weaker hypothesis at the
basis of these partial results allowed to clarify many aspects of the problem.

Indeed, we separated the hypotheses needed to control the tunnelling
time from the ones needed to control the tube of typical paths.

As far as tunnelling time is concerned, we separated the hypotheses to
get convergence in probability, in L1 and in law of the variables Xb :=
1
b

ln y
g0
X
s.

Concerning the tube of typical paths, we propose to give a partial
characterization (the most important one from a physical point of view) by
identifying the minimal gates.

This better understanding of the problem allows to clarify the rela-
tionship among the different approaches to metastability in the Freidlin–
Wentzell regime. This section is devoted to discuss in more details the dif-
ferences between the approach proposed in this paper and previous results.

6.1. Why in Some Previous Approaches Tunnelling Time and Exit

Tube Came Jointly

We want now to discuss the approach followed in several previous
papers (see refs. 9–11, 17, 18, 23), treating metastability for different lattice
models and to make a comparison with the method in the present note. In
those papers a common strategy was used. A key ingredient was the possi-
bility to find a connected set D containing g0 and not intersecting X s

satisfying the following conditions:

(a) There exists a path wg: g0 QX s such that {arg maxw* H} ı
F(“D)

(b) Let P=F(“D) and let C=H(P)−H(g0). For any g ¥D we
have

lim
bQ.

P(ygg0 < yg“D and ygg0 < e
bC0)=1 (6.1)

where C0 < C.
(c) Let

Pa={g ¨ (D 2 “D) : ,s ¥P downhill communicating with g}. (6.2)

For any g ¥Pa we have

lim
bQ.

P(ygXs < e
bC0)=1 (6.3)

where C0 < C.
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The above conditions characterizing the set D are a strengthening of
the previous hypotheses characterizing the set B introduced at the begin-
ning of Section 4.2 (see (4.28)).

D represents, in practice, the subcritical states, namely the ones typi-
cally evolving towards g0 before hitting X s. Condition (b) says that from
any configuration in D the system recurs in g0 before exiting D, in a time
exponentially smaller than ebC. From (a) it is easy to deduce that the
communication height between g0 and X s is H(P). It is easily seen that
CX

s(g0) is contained in D so we can use the exit time from CX
s(g0) to get a

lower estimate of the tunnelling time.
With high probability when our process crosses the boundary “D,

during the first excursion from g0 to X s, it passes through F(“D)=P.
This follows from condition (b) and Eq. (2.18), using that, by reversibility
we have

lim
bQ.

P(ygz < e
b(H(z)−H(g)−d))=0 (6.4)

for any g, z ¥X and d > 0.
Then, possibly after many attempts, the process will eventually exit

downhill from D 2 “D passing through Pa . Condition (c) ensures that from
Pa the first hitting time in X s is exponentially shorter than ebC, so the yX

s

and y“D are of the same order. In this way it is possible to get an upper
estimate of the tunnelling time without supposing total absence of deep
wells.

In order to use this method, in many of the previous works, the
authors needed a precise knowledge of the set P. Then, to verify condition
(c), they used other very detailed model-dependent information, namely
they determined the set Pa and were able to control the tube of typical path
to X s emerging from states in Pa .

We clearly see that in this approach the problem of tunnelling time is
solved jointly with the one of the tube of typical paths.

In the language developed in Section 4 we can say that the tube of
typical paths from Pa to X s is a habitat without deep cycles. This requires a
local detailed analysis of the energy landscape instead of a rough but global
analysis as the one used to prove recurrence to {g0 2X s} in a sufficiently
short time. On the other hand, this local information is enough to get the
result in probability, but not in L1 since, for this purpose, it is necessary to
have a global control of deep wells in the whole energy landscape.

As we discussed before, in refs. 8–11, 17, 18, and 23, due to the strong
conditions required in the definition of the set D, it was easy to get that
P :=F(D) is a minimal gate.
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This approach could be probably extended to cases with many
minimal gates by relaxing hypothesis (c). Anyway, we remark that the
structure of the gates and the behavior of the process, when crossing them,
is a key point in the description of the tube of typical paths.

In this note, we call the attention on these sets and give general results
on their structure. The strategy we use consists in observing the process
when it crosses suitable target manifolds (the sets “B with B as in (4.28)).
In order to complete the picture and give the full information on the tube
of typical paths, we should follow all the optimal paths emerging from any
essential saddle until they reach a new essential saddle or X s 2Xm. This
involves a model-dependent analysis that is often quite delicate. However
the approach proposed in this paper could have some advantages:

(1) the analysis needed to find a set B with the properties in (4.28)
requires just a description of the energy landscape whereas (6.1), which is
formulated in terms of probabilities of hitting times is, at least in principle,
a stronger condition;

(2) the general notions and structure properties concerning the gates
that we develop, turn out to be useful in the perspective of determining
the typical tube. Indeed, for example, the preliminary knowledge of the
minimal gates allows to restrict the search of optimal paths to the subpaths
emerging from essential saddles.

6.2. An Example: 3DK versus 3DG

In order to give an example and a concrete comparison between the
approach proposed in this paper and more powerful but more difficult
theories, we discuss here the differences between the analysis of metasta-
bility in non-conservative and conservative dynamics, having in mind the
results on the 3D Glauber and Kawasaki dynamics in finite volume, refs. 2
and 16, respectively.

Let us first briefly recall the main ideas used in ref. 2 for the case of
Glauber dynamics. We introduce the Glauber dynamics for the 3D Ising
model in complete analogy to what we did in Section 2.1 for the 2D case.
We still assume h > 0. It is easy to see that, as in dimension 2, the configu-
ration +1, with all spin plus, is the stable state, i.e., the unique absolute
minimum of the energy H(s), while the configuration with all spins minus,
− 1, for h < 2 is a local minimum. To study the asymptotics of the tun-
nelling time, it is important to determine the communication height
F(− 1,+1). To this purpose one can use the strategy already explained
in the previous section in the example of the 2D Ising model, see
Theorem 5.10. Indeed, as before, to every configuration s it is possible to
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associate the union of unitary cubes corresponding to plus spins of s, this
region is called a polyomino in ref. 2. The energy of the configuration s can
be easily written in terms of the area, a(s), and the volume, v(s), of the
corresponding polyomino: H(s)=Ja(s)−hv(s). This remark suggests
that, in order to determine the communication height between states or set
of states, it is useful to consider the foliation of the state space in terms of
volumes of the corresponding polyominoes. Indeed, every path going from
− 1 to +1 has to cross every manifold corresponding to fixed volume. In
this way the solution of the min-max problem is reduced to minimize the
area at fixed volume. Following ref. 1, we call quasi-cube a parallelepiped
with sides m, (m+d), (m+h), with d, h ¥ {0, 1}, a quasi-square a parallel-
epiped with sides l, (l+a), 1, with a ¥ {0, 1} and a bar a parallelepiped with
sides k, 1, 1. We define minimal polyomino a configuration with minimal
surface among all those with the same volume, and principal polyomino a
configuration whose single cluster is a quasi-cube with a quasi-square
attached to one face of the quasi-cube and with a bar attached to one side
of the quasi-square (see ref. 1 for more details).

Since for each n ¥N there exists a unique 6-tuple (m, l, k, d, J, a) such
that:

n=m(m+d)(m+J)+l(l+a)+k, (6.5)

where m, l, k ¥N0, d, J, a ¥ {0, 1}, and d [ J, k < l+a, l(l+a)+k <
(m+d)(m+J), then it is natural to associate with each n ¥N a principal
polyomino.

The following discrete isoperimetric inequality is a key ingredient in
the analysis.

Theorem 6.6 (Alonso and Cerf, ref. 1, Theorems 3.1 and 3.6).

(a) All principal polyominoes are minimal polyominoes.

(b) The set of minimal polyominoes of volume n coincides with the
set of principal polyminoes of volume n if and only if n is of the form
‘‘quasi-cube+ quasi-square’’ or ‘‘quasi-cube −1.’’

Item (a) of Proposition 6.6 was in fact already proved by Neves. (22)

This first result is sufficient to find the communication height F(− 1,+1).
Indeed, it turns out that the maximal energy of principal polyominoes, as a
function of the volume, is obtained for a critical value of the volume,
v(s)=nc, where nc is a suitable function of h. Call C this energy. Since it is
possible to exhibit a reference path w: − 1 Q +1 with max i H(wi)=C, we
can conclude that C is the communication energy.
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Item (b) is the crucial ingredient to complete the analysis of the
asymptotics and of the tube of typical paths. For the magic numbers corre-
sponding to volumes of ‘‘quasi-cube+quasi-square’’ the minimal poly-
ominoes are just given by the principal polyominoes. Note that this is no
longer true for ‘‘general’’ volumes. However, the information at magic
numbers is sufficient to completely solve the problem. This is the 3D
analog of what we called ‘‘focusing’’ in the discussion of the 2D Ising
model (in Theorem 5.10). In fact if we consider the maximal cycle C+1(− 1)
containing − 1 but not containing +1, it is possible to show that the con-
figuration of minimal energy on its boundary are principal polyominoes of
volume nc. In other words, since nc is of the form magic number+1, the
complete information on configurations minimizing the energy on the
manifold corresponding to the volume given by the magic number nc−1, is
sufficient to obtain a geometrical characterization of the configuration of
minimal energy on the boundary of C+1(− 1).

By means of the above model-dependent analysis ben Arous and Cerf
are able to apply the theory developed in ref. 6, to determine the tube of
typical path after exiting C+1(− 1) from which the the asymptotics of tun-
nelling time, can be derived in probability.

Notice that this proof does not need a control of stability of configu-
rations far away from the tube, and thus the evaluation of the mean value
of the tunnelling time is not done.

Let us now consider a ‘‘local version’’ of 3D Kawasaki dynamics
introduced in ref. 16. Consider a lattice gas in a finite box L … Z3 with each
configuration g ¥ {0, 1}L we associate a grand-canonical hamiltonian

H(g)=−U C
(x, y)

g(x) g(y)+D C
x ¥ L

g(x) (6.7)

where −U < 0 is a binding energy, the first sum is on pairs (x, y) of n.n.
sites inside L− , the interior of L, obtained by removing the internal
boundary (“−L) from L, i.e., L− :=L0“−L and D > 0 is an activity
parameter. The standard Kawasaki dynamics is usually defined in an infi-
nite volume given by a Metropolis Markov chain where the occupation
variables of each pair of n.n. sites, (x, y), are exchanged with a rate

e−b[H(g
(x, y))−H(g)]+ (6.8)

with g(x, y) the configuration obtained from g by interchanging the occupation
number at x, y. The local version introduced in ref. 16 is the following: inside
the box moves are Kawasaki exchange and on the boundary a process of
creation and annihilation of particles takes place at rates e−Db and 1, respec-
tively. Here e−Db represent the gas density in the limit of large b.
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By using the transformation g=1+s
2 , it is immediate to verify that this

lattice gas hamiltonian corresponds to the Ising hamiltonian with J=U
2 and

h=2U−D. As in the case of the spin variables, we can write the energy in
terms of the area and the volume of the associated polyomino of occu-
pied sites in L− and the number of particles in “−L: H(g)=U

2 a(g)−
(3U−D) v(g)+D ;x ¥ “ −L g(x). The unique ground state is then 1, the con-
figuration with ones precise in L− and empty in “−L, and 0, the empty
configuration, is a local minimum for D < 3U.

Arguments similar to those used in 3DG, can be used in 3DK to
evaluate the communication height F(0, 1). Actually the same idea of
foliation of the state space in terms of the volume of the cluster, with the
associated results by ref. 1, can be used in the conservative case to find
the solution of the min-max problem. Let C :=F(0, 1). Again the result
on magic numbers produces an effect of focusing. However the min-max
problem between contiguous manifolds happens to be much more compli-
cated as a consequence of conservativity of the dynamics so the gate of
the transition is much larger. Indeed, as explained in details in ref. 16,
Kawasaki moves produce a motion of matter along the boundary of the
cluster that takes place with high probability before the growth or the
shrinking of the cluster. This motion, at fixed number of particles, is a
conservative effect producing a sensitive enlargement of the gate in the
transition from the 0 to 1. In other words, due to this conservation there is
a large degeneracy of states at the same minimal energy on the boundary of
C1(0). For this reason it becomes really very hard to determine the typical
evolution after leaving C1(0), as done in the non-conservative case.

However, with a very simple argument, we can prove that in 3DK
there are no deep wells. More precisely in ref. 16 it is proven that there
exists C0 < C such that XC0={0, 1}. This is proved by finding, for each
configuration g different from 0, a suitable path starting at g and reaching
1 within an energy C0.

Using this result we can apply the approach proposed in this paper to
obtain asymptotic estimates on the tunnelling time y0

1 in probability and in
L1 and we can prove its asymptotic exponential distribution. Actually in
ref. 16 the results in L1 and in law are not derived. An example of a gate
configuration is given in Fig. 5.

6.3. Gates and Pre-Factors

One of the main aspects in this paper is to focus the attention on the
notion of minimal gate, a partial but central description of the tube of
typical paths.

On the Essential Features of Metastability 635



Fig. 5. A critical configuration with mc=20, lc=10 and dc=0.

Unlike the preceding works, we analyze here the general situation
where we can have many minimal gates. This fact poses many new and
interesting questions.

We discuss here the relationship between the gates and the results in
ref. 5: ref. 5 is the application of the powerful method developed in ref. 3 to
study metastability in a quite general setting where the state-space Xb may
depend on a parameter b of the system. Contrary to our approach, where
L1 estimates are deduced by probability estimates on cycle-paths, in the
approach in ref. 3 the results in probability are obtained via a very sharp
control of the Laplace transforms of the tunnelling time. The tunnelling
time is described at the level of its mean value and distribution in terms of
the quantities

P(ygt [ ygg) (6.9)

to be computed directly from the stochastic matrix P that defines the
dynamics.

In the context of ref. 3, metastability is characterized by the existence
of a sequence of sets {Mb}b with the property

sup
g, gŒ ¥Mb
z ¥Xb

P(yggŒ < ygg)
P(yzMb < yzz)

||0
bQ.

0. (6.10)

Under the non-degeneracy hypothesis that for any pair g, gŒ ¥Mb and
any set I …Mb 0{g, gŒ} the ratio

P(ygI < ygg)

P(ygŒI < ygŒgŒ)
(6.11)
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either tends to zero or to infinity as b goes to infinity, the following
theorem is proven (among other results characterizing the low lying spec-
trum of the Markov generator):

Theorem 6.12 [from Theorem 1.3 in ref. 3]. Let Mb be a set with
properties (6.10), (6.11).

For any g ¥Mb, let Mb(g) :=Mb 5Ig (see (2.10) for the definition
of Ig )

E(ygMb(g))=k(P(y
g
Mb(g)

< ygg))
−1 (1+o(1)) (6.13)

and, for any t > 0,

P(ygMb(g) > tE(y
g
Mb(g)
))=e−t(1+o(1))(1+o(1)). (6.14)

The constant k is explicitly given and can be read as the degeneracy of the
bottom of the cycle CIg

(g).

Results about the typical paths are not taken into account in this
approach.

All model-dependent aspects of the problem are somehow hidden in
the probability P(ygMb(g) < ygg) and the strength of this method relies on the
precision in the computation of this quantity. In the case of Metropolis
dynamics in the Freidlin–Wentzell regime, quantities like this can be
directly computed by using the well known Dirichlet representation (see,
e.g., ref. 19, Theorem 6.1)

P(ygt < ygg)=
1
2 e
bH(g) inf

h ¥H
g
t

C
z, zŒ ¥X

q(z, zŒ) e−b max{H(z), H(zŒ)}(h(z)−h(zŒ))2,
(6.15)

where H
g

t :={h: XQ [0, 1]; h(g)=0, h(t)=1}.
By taking h(z) as the characteristic function of Ct(g), we immediately

get

P(ygt < ygg) [ C1e
−b(F(g, t)−H(g)), (6.16)

where C1 [ |“Ct(z)| max z, zŒ ¥X q(z, zŒ). On the other hand, the simple one-
dimensional argument used in ref. 5, Eq. (4.5) gives

P(ygt < ygg) \ C2e
−b(F(g, t)−H(g)), (6.17)

with C2 \ |X|−1 min z, zŒ ¥X{q(z, zŒ): q(z, zŒ) > 0}.
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We remark that by (6.16), (6.17) it is not difficult to show that (6.10)
is the dynamical counterpart of g0 ¥Xm and corresponds to

sup
g, gŒ ¥Mb
z ¥Xb

[(F(g, gŒ)−H(g))−(F(z,Mb)−H(z))] > 0. (6.18)

The non-degeneracy hypothesis (6.11) of Theorem 6.12 implies that g0=Xm

and is needed to ensure the exponentiality of the law of y
g0
X
s/E(yg0

X
s) (see

Theorem 4.15).
The estimate on the mean tunnelling time given by (6.16), (6.17) via

Theorem 6.12 are considerably stronger than the corresponding (4.10)
given by our method and can be pushed to C1=C2+o(b) with a finer
analysis.

As noticed in ref. 5, this computation can be done under general
hypotheses and was carried out in the case of a unique minimal gate with
the further simplifying hypothesis that the states in the gate are not con-
nected between each other in one step.

We want now to give a result that reformulates and slightly generalizes
Lemma 3.2 in ref. 5:

Theorem 6.19. If g0=Xm and the minimal gate W between g0
and X s is unique and S(g0, X s) is made of isolated points (i.e., q(z, zŒ) — 0
for all {z, zŒ} …S(g0, X s)).

Let Q :={g ¥X : F(g, g0) [ C=F(g, X s)}0S(g0, X s) and p̌z :=
;t ¥ Q P(z, t), p̂z :=;t ¨ Q, t=z P(z, t).

Then,

P(yg0
X
s < yg0g0 )=Kg0e

b(F(g0, X
s)−H(g0))(1+o(1)). (6.20)

With

Kg0= C
z ¥S(g0, X

s)

p̂z p̌z
p̂z+p̌z

(1+o(1))= C
z ¥W(g0, X

s)

p̂z p̌z
p̂z+p̌z

. (6.21)

Proof. The proof is based on the notion of minimal gate that turns
out to be crucial for the analysis of the structure of the set of saddles. It
can be obtained along the same lines as the ones of Lemma 3.2 in ref. 5 to
which we refer: here we only outline some specific points. It is easy to
see that the hypothesis of uniqueness of the minimal gate implies that
W ı “CX

s(g0). Suppose first all the saddles are essential; in this case we can
directly apply Lemma 3.2 in ref. 5 to get the result. On the other hand, if
there are unessential saddles, it becomes crucial to use in our construction
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Fig. 6. Two examples where H(N) > H(j) > H(g) > H(h). Only in case (a) the unes-
sential saddle z does not influence the pre-factor C− 1.

the set Q that contains CX
s(g0) together with all cycles that can be con-

nected to CX
s(g0) through unessential saddles. Using this set Q it is possible

to reduce the study of the pre-factor to the analysis of single steps of the
dynamics as it is needed in the definitions of p̌z and p̂z that involve only the
one-step transition probabilities. L

It is immediate to see that p̂z is exponentially small if z is unessential,
showing that only the states in the minimal gate W (supposed unique)
contribute to the pre-factor in (6.21).

It is a very remarkable fact that the set W emerges in this context as
the crucial set to be investigated. A natural conjecture arises: is it the case
that unessential saddles do not contribute to the pre-factor Kg0 in (6.21)
also in the case we drop the hypothesis of uniqueness of the minimal gate?
As we already said, the answer is negative.

In Fig. 6, we give two examples, apparently very similar. Only in the
first case though, the unessential saddle z does not influence the pre-factor.

We conjecture that z does not influence the pre-factor whenever there
exists a cycle C ^‡X s 2 g0 that is crossed by every optimal path w ¥

(z Q {X s 2 g0}). Heuristically, this property entails that the process when
reentering C looses memory of its visit to z. More precisely, there exists
d > 0 such that for any t ¥ C,

P(ytXs < ytg0 )=P(ytXs < ytg0 | y
t
X
s 2 g0 < ytz)(1+O(e

−bd)). (6.22)

Indeed,

P(ytXs < ytg0 )=P(ytXs < ytg0 2 z)+P(ytz < ytXs 2 g0 ) P(y
z
X
s < yzg0 )

=P(ytXs < ytg0 2 z)

+P(ytz < ytXs 2 g0 )[P(y
z
t < yzXs 2 g0 ) P(y

t
X
s < ytg0 )+P(yzXs < yzg0 2 t)].

(6.23)
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Since all optimal paths w ¥ (z QX s 2 g0)opt must enter C, by the same
argument used in the proof of Theorem 5.4 and by Theorem 2.17 we get
P(yzt < yzXs 2 g0 )=1−O(e

−2bd) for suitable d.
Hence,

l.h.s. of (6.23)=P(ytXs < ytg0 2 z)

+P(ytz < ytXs 2 g0 )[(1−O(e
−2bd)) P(ytXs < ytg0 )+O(e

−2bd)].
(6.24)

and

P(ytXs < ytg0 )=

P(ytXs < ytg0 2 z)
11+O(e−2bd) P(y

t
z < ytg0 2X

s)
P(ytXs < ytg0 2 z)

2

P(ytXs 2 g0 < ytz)11+O(e−2bd)
1−P(ytXs 2 g0 < ytz)
P(ytXs 2 g0 < ytz)

2
. (6.25)

Now, since F(z, X s 2 g0) [H(z), by Theorem 2.17 P(ytXs 2 g0 < ytz) \ e
−bd

and P(ytXs < ytg0 2 z) \ e
−be for any e. (6.22) follows.

In the example of Fig. 6, we see that while in case (a) the trajectories
leaving z must enter the cycle given by the two states denoted with the
symbol j, in case (b) the visit to the state z must be taken into account in
the computation of the transition probability.

We will further explore the connection between gates ad pre-factors in
a forthcoming paper.
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